4438最大成人|麻豆传媒国产AV手机在线播放|泉州市麻豆文化传媒公司|麻豆传媒md0076沈芯语在线|m麻豆传媒映画微博|yy4080香蕉视频|91制片厂制作厂|国产网红主播精品一区二区|sd肉蒲团|国产成人高清亚洲一区潘金莲,爱豆传媒网站视频资源,兔子先生第一,swag在哪看

    高級(jí)檢索

    煙苗整齊度評(píng)估分析模型研究

    An Analytical Model for Assessing Tobacco Seedling Uniformity

    • 摘要: 為實(shí)現(xiàn)集約化育苗工廠內(nèi)煙苗整齊度的快速判斷分析,本研究采用廣義加性模型,,對(duì)煙草苗床數(shù)據(jù)進(jìn)行分析,,篩選煙草苗床整齊度指標(biāo),。通過(guò)隨機(jī)森林算法,、BP神經(jīng)網(wǎng)絡(luò)算法、支持向量機(jī)算法建立煙苗整齊度評(píng)估模型,,并采用粒子群算法對(duì)模型分別進(jìn)行優(yōu)化,。采用深度學(xué)習(xí)算法Alexnet、Resnet101和GoogleNet,,2種優(yōu)化器Adam和Nadam構(gòu)建煙草苗床整齊度圖像識(shí)別模型,。研究結(jié)果表明,煙苗株高,、莖圍,、有效葉數(shù)對(duì)煙苗整齊度有顯著影響;粒子群優(yōu)化隨機(jī)森林算法模型性能最優(yōu),,訓(xùn)練集準(zhǔn)確率為96.67%,,測(cè)試集準(zhǔn)確率為88.00%,R2=0.69,,MAE=0.13,;Adam-GoogleNet模型識(shí)別性能最優(yōu),對(duì)煙苗整齊度測(cè)試數(shù)據(jù)識(shí)別平均準(zhǔn)確率為93.89%,。研究結(jié)果可為煙草苗床整齊度科學(xué)評(píng)價(jià)提供合理依據(jù),,為煙苗整齊度圖像識(shí)別系統(tǒng)開發(fā)提供模型支撐。

       

      Abstract: To achieve rapid assessment and efficient analysis of the uniformity of tobacco seedlings in an intensive seedling factory, this study employs a generalized additive model (GAM) to analyze tobacco seed nursery data and screen for indicators of tobacco seedling uniformity. We evaluated Random Forest algorithm, BP Neural Network algorithm, and Support Vector Machine (SVM) algorithm. Particle Swarm Optimization (PSO) is then applied to optimize each of these models separately. This study constructs image recognition models for assessing the uniformity of tobacco seed nursery using deep learning algorithms, two optimizers, Adam and Nadam, specifically AlexNet, ResNet-101, and GoogLeNet. The research results indicate that the plant height, stem circumference, and number of effective leaves of tobacco seedlings have a significant impact on the uniformity of the tobacco seedlings. The Particle Swarm Optimized Random Forest model demonstrates the best performance, with an accuracy of 88.00%, an R2 value of 0.69, and a Mean Absolute Error (MAE) of 0.13. The Adam-GoogLeNet model shows the best recognition performance, achieving an averaged accuracy of 93.89%. Overall, findings of this study provide a reasonable basis for the scientific evaluation of tobacco nursery bed uniformity and offer support for the development of tobacco seedling uniformity image recognition systems.

       

    /

    返回文章
    返回